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The space-time temperature distribution in materials with a positive temperature coefficient of resistance
under the action of electric current on them has been analyzed by numerical methods. The nonstationary
boundary-value heat-conduction problem with a nonlinearity of the third kind has been solved. The results ob-
tained theoretically have been compared to experimental data.

Thermal resistors based on a semiconductor BaTiO3 (posistors) have widely been used in electrical engineer-
ing and electronics as heating elements, temperature-sensitive elements, elements of protection against current over-
loads, and others [1]. Such a wide use of them is determined primarily by the presence of a large positive temperature
coefficient of resistance (PTCR) observed in the region of temperature of ferroelectric phase transition (TC) [2]. One
can change TC (and accordingly the temperature of transition to a high-resistance state) and the values of the specific
resistance of the material and the PTCR using different modifying additions. Thus, it is possible to create BaTiO3-
based thermal resistors with parameters optimized in accordance with the technical conditions of operation of the ele-
ments. In certain cases, the use of thermal resistors in circuits of protection against high current overloads and under
the conditions of intense heat exchange with the environment is limited by the high thermal stresses, which may give
rise to cracks and their propagation or may end in mechanical failure of the samples. Therefore, the problem of cal-
culation of the distribution of temperature in PTCR thermistors and its time variations in the process of switching of
the elements to a high-resistance state is of great importance, and its solution has been the objective of a number of
investigations [3–8]. It was shown that the temperature difference between the central part of the thermistor and its
surface may attain 20–40oC. The temperature gradient substantially depends on the properties of the material (specific
resistance, PTCR, and phase-transition temperature) and the conditions of heat exchange with the environment. How-
ever, study of the above factors has received little attention.

The dependence of the temperature distribution in samples on the conditions of heat exchange with the envi-
ronment and the strongly nonlinear relationship between the bulk heat-flux density and the temperature make it neces-
sary to solve the nonstationary boundary-value problem with a nonlinearity of the third kind even in the simplest
one-dimensional case [9]. The use of analytical methods of solution of the problem posed shows little promise, and it
is expedient to use numerical methods to solve it. This investigation seeks to develop a mathematical model of de-
scription of the thermophysical processes in PTCR thermistors.

Theoretical Model. The geometry of posistor elements commonly used in practice and the structure of con-
necting elements are such that the heat flux may be assumed to propagate in one direction in the system. This enables
us to substantially simplify the theoretical description, restricting ourselves to solution of a one-dimensional heat-con-
duction equation.

We consider a posistor element in the form of a thin plate of thickness L and area S. The temperature distri-
bution over the thickness T(x) (0 < x < L) may be obtained in this case by solution of the one-dimensional heat-con-
duction equation
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satisfying the initial condition T(x) = T0 = 20oC at t = 0.
The boundary conditions have been selected under the assumption that the heat flux on the surface is in pro-

portion to the difference of the surface temperature and the environment temperature (Newton’s law):
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In Eq. (1), the bulk heat-flux density depends on the temperature of the volume element q = q(x, T). Thus,
we have a nonstationary, nonlinear boundary-value problem of the third kind [9]. In the case where the specific resis-
tance ρ(x, T) is temperature- and coordinate-dependent, the relation
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holds.
The specific resistance of a posistor ceramics ρ depends on the composition of the material, the technological

regimes of its preparation, the sample temperature, and the voltage applied (varistor effect). A typical temperature de-
pendence of the specific resistance of a barium-titanate-based semiconductor ceramics is shown in Fig. 1.

It is difficult to approximate the temperature dependence of the specific resistance throughout the interval of
operating temperatures by a single mathematical expression. We used a generalized, or "typed", temperature charac-
teristic that is distinguished for its simplicity and provides a correct idea of the character of variation in the resistance
in the materials under study:
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It is common knowledge that the PTCR effect in ceramic samples is determined by the change in the height
of the potential barrier at the grain boundaries in the region of ferroelectric phase transition. It is precisely in this re-

Fig. 1. Specific resistance ρ of a BaTiO3-based posistor ceramics (TC = 120oC)
vs. temperature T. ρ, Ω⋅cm; T, oC.
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gion that the specific heat of a sample undergoes a substantial change. In the calculations, we used the following de-
pendence of the specific heat on the temperature [3]:

c (θ) = c0 [1 + c1θ + c2 exp (% λθ)] , (6)

where c0 = 523 J/K, c1 = 0.024 J/K, c2 = 0.296 J/K, and λ = %3 (+ for θ < 0 and − for θ > 0). The dimensionless
temperature θ is determined from the equation

θ = (T − TC) ⁄ TC . (7)

The remaining characteristics of the elements (λ, σ, and others) do not undergo such a sharp change in the region of
temperatures under study, and we disregarded their temperature dependence in the calculations.

The problem was solved by the finite-difference method according to the six-point scheme (Crank–Nicholson
scheme). The algorithm was realized with the use of object-oriented programming in the Delphi environment. We have
developed a convenient interface for the MS Windows 2000 operating system to change the thermistor parameters and
to analyze the results obtained.

Check of the Model. The correctness of the mathematical model proposed and of the algorithm of its numeri-
cal solution was checked by comparison of theoretical results to experimental data. For this purpose, we used the sam-
ples of thermistors with known characteristics (temperature dependence of the resistance and surface temperature of the
samples and their geometric dimensions). The surface temperature was measured in accordance with the recommenda-
tions of the International Electrotechnical Commission. The voltage applied to the samples was 220 V. The charac-
teristics of the samples (specific resistance at room temperature, positive temperature coefficient, phase-transition
temperature, thickness, and area) are given in Table 1.

The temperature dependence of the specific resistance for sample No. 1 is given in Fig. 2.
The switching time was determined as the period of the thermistor attaining the temperature at which its re-

sistance is twice as high as the minimum resistance (based on the dependence R = f(T)). To experimentally determine
this parameter we investigated the dependences of the current traversing the sample on the time. It is clear that the

TABLE 1. Characteristics of Posistor-Ceramics Samples

Sample No. ρ0, Ω⋅m α, %/K TC, oC L, mm S, mm2

1 5.1 0.2 130 2.64 285

2 240 0.1 212 2.21 285

3 320 0.1 207 3.50 284

Fig. 2. Temperature dependence of the specific resistance ρ for sample No. 1.
ρ, Ω⋅m; T, oC.

Fig. 3. Oscillogram of the current I for sample No. 1. I, A; t, sec.
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switching time corresponds to the period when the current becomes half as high as its maximum value. The oscillo-
gram of the current for sample No. 1 is given in Fig. 3.

Based on the oscillograms of the current, we made corrections to the value of the specific resistance. The re-
sistances of the samples in heating by the electric current are lower than the resistances measured at the zero power
because of the varistor effect. Furthermore, posistor ceramics is characterized by the presence of a negative coefficient
of resistance at temperatures lower than the temperature of ferroelectric phase transition. This phenomenon was also
taken into account in the calculations by correction of the value of ρ0. The variation in the temperature with time for
sample No. 1 is given in Fig. 4.

Analogous measurements were also carried out for other samples. The calculated and experimental values of
the surface temperature and the switching time are systematized in Table 2, which shows a good agreement between
experimental and theoretical results.

Thus, the model proposed may be used for analysis of thermophysical processes in materials with a PTCR.

NOTATION

c, specific heat, J/(kg⋅K); I, current, A; L, thickness of the samples, m; q, bulk density of the heat flux,
W/m3; R, resistance of the posistor, Ω; S, area of the samples, m2; T, temperature, oC; TC, Curie temperature, oC;
T0, initial temperature (environment temperature), oC; Tmax and Tmin, maximum and minimum temperatures of the
posistors, oC; Ts, surface temperature of the thermistors, oC; tr, switching tome of the thermistor, sec; U, voltage ap-
plied to the posistor V; α, positive temperature coefficient of resistance, %/K; θ, dimensionless temperature; λ, thermal
conductivity, W/(m⋅K); ρ∗, density, kg/m3; ρ, specific resistance, Ω⋅m; ρ0, specific resistance at 20oC, Ω⋅m; σ, coeffi-
cient of heat transfer of the surface, W/(m2⋅K). Subscripts: max, maximum; min, minimum; s, surface; r, refraction
(switching); 0, initial value.
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